3 T826/827 Initial Tuning & Adjustment

This equipment contains CMOS devices which are susceptible to damage from static charges. Refer to Section 1.2 in Part A for more information on anti-static procedures when handling these devices.

The following section describes both short and full tuning and adjustment procedures and provides information on:

- channel programming
- selecting required audio links
- synthesiser alignment
- PA alignment (T826 only)
- modulator adjustment
- limiter adjustment
- setting line level
- compressor adjustment
- timer adjustment.

Note:

Unless otherwise specified, the term "PGM800Win" used in this and following sections refers to version 2.00 and later of the software.

Refer to Section 6 where the parts lists, grid reference index and diagrams will provide detailed information on identifying and locating components and test points on the main PCB. The parts list and diagrams for the VCO PCB are in Part E.

Section	Section Title	
3.1	Introduction	3.3
3.2	Channel Programming	
3.3	Test Equipment Required	
3.4	Short Tuning Procedure	3.5
3.4.1	Introduction	3.5
3.4.2	Synthesiser Alignment	3.5
3.4.3	Output Power Adjustment (T826 Only)	3.5
3.4.4	Two Point Modulation Adjustment	3.6
3.4.5	CTCSS Encoder (If Used)	3.7
3.4.6	FM Deviation (Limiter) Adjustment	3.7
3.4.7	Line-in Level Adjustment	3.7

Section Title		Title	Page
3.5		Audio Processor Links	3.8
	3.5.1	Link Details	3.8
	3.5.2	Typical Options	3.8
3.6		Synthesiser Alignment	3.9
3.7		Output Power Adjustment (T826 Only)	3.10
3.8		Thermal Shutdown (T826 Only)	3.10
	3.8.1	Normal Operation	3.10
	3.8.2	Continuous Operation	3.10
3.9		Audio Processor & CTCSS	3.11
	3.9.1	Two Point Modulation	3.11
	3.9.2	Modulator Adjustment	3.11
	3.9.3	CTCSS Encoder (If Used)	3.12
	3.9.4	Limiter Adjustment	3.12
	3.9.5	Line Level Without Compressor	3.13
	3.9.6 3.9.6.1 3.9.6.2 3.9.6.3	Compressor Compressor On Line Input Only Compressor On Microphone Input Only Compressor On Both Line & Microphone Inputs	3.13 3.13 3.13 3.14

Figure	Title	
3.1	T826/827 Test Equipment Set-up With T800-01-0010	3.4
3.2	T826/827 Test Equipment Set-up Without T800-01-0010	3.4

3.1 Introduction

When you receive your T826 transmitter or T827 exciter it will be run up and working on a particular frequency (the "default channel")¹. If you want to switch to a frequency that is within the 8MHz switching range (i.e. ±4MHz from the factory programmed frequency), you should only need to reprogram the transmitter/exciter with the PGM800Win software (refer to the PGM800Win programming kit and Section 3.2 below).

However, if you want to switch to a frequency outside the 8MHz switching range, you will have to reprogram and re-tune the transmitter/exciter to ensure correct operation. In this case you should carry out the short tuning procedure described in Section 3.4.

If you have carried out repairs or other major adjustments, you must carry out the full tuning and adjustment procedure described in this section (except for Section 3.4).

3.2 Channel Programming

You can program up to 128 channel frequencies into the transmitter/exciter's EEPROM memory (IC820) by using the PGM800Win software package and an IBMTM PC. You can also use PGM800Win to select the transmitter/exciter's current operating frequency (or "default channel").

If the transmitter/exciter is installed in a rack frame, you can program it via the programming port in the speaker panel. However, you can also program the transmitter/exciter before it is installed in a rack frame as follows:

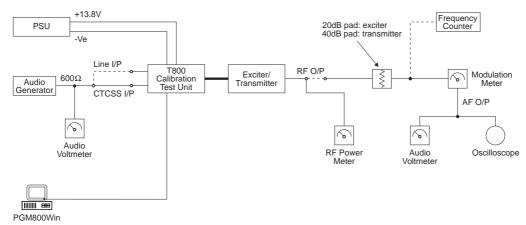
- by using a T800-01-0010 calibration test unit;
- via D-range 1;
- via D-range 2 (standard T800-03-0000 auxiliary D-range only);
- via SK805 (internal Micromatch connector).

If you do not use the T800-01-0010, you will have to connect the PC to the transmitter/exciter via a module programming interface (such as the T800-01-0004).

For a full description of the channel programming procedure, refer to the PGM800Win programming software user's manual.

Note:

When an auxiliary D-range kit (D-range 2 - T800-03-0000) is fitted, you can also select a channel with an external switch, such as the DIP switch on the rack frame backplane PCB. Refer to Part C in the T800 Series Ancillary Equipment Service Manual (M800-00-101 or later issue) or consult your nearest Tait Dealer or Customer Service Organisation for further details.


^{1.} Use the "Read Module" function in PGM800Win to find out what the default channel is.

3.3 Test Equipment Required

You will need the following test equipment:

- computer with PGM800Win installed
- T800 programming kit
- module programming interface (e.g. T800-01-0004 optional)
- 13.8V power supply
- digital multimeter
- audio signal generator
- RF power meter
- audio voltmeter x 2
- modulation meter
- oscilloscope (digital preferred)
- 20dB or 40dB pad
- T800-01-0010 calibration test unit (optional)

Figure 3.1 and Figure 3.2 show typical test equipment set-ups.

or RF test set (optional)

Figure 3.1 T826/827 Test Equipment Set-up With T800-01-0010

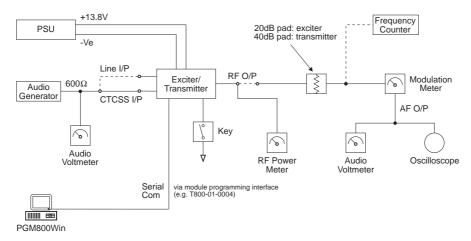


Figure 3.2 T826/827 Test Equipment Set-up Without T800-01-0010

3.4 Short Tuning Procedure

Use this procedure only if you want to reprogram the T826/827 to a frequency outside the 8MHz switching range and do not intend to carry out any other major adjustments or repairs.

3.4.1 Introduction

Reprogram the operating frequency as described in the PGM800Win programming kit (refer to Section 3.2).

Remove the top cover (nearest the handle).

Set up the test equipment as described in Section 3.3.

Set the links in the audio processor section as required (refer to Section 3.5).

3.4.2 Synthesiser Alignment

- Connect a high impedance voltmeter to PL4-1 or the junction of L1 & R1 in the VCO (this measures the synthesiser loop voltage).
- Key the transmitter by earthing the Tx-Key line.

• Single Channel Tune VCO trimmer &VC1-TX for a synthesiser loop volt-

age of 9V.

Multichannel Tune VCO trimmer &VC1-TX for a synthesiser loop volt-

age of 9V on the middle channel.

If there is no middle channel, tune &VC1-TX so that the channels are symmetrically placed around a loop voltage

of 9V.

All channels should lie within the upper and lower limits

of 13V and 5V respectively.

Do not attempt to program channels with a greater frequency separation than the specified switching range of

8MHz.

3.4.3 Output Power Adjustment (T826 Only)

Connect an RF power meter with suitable attenuation to the output socket and key the transmitter.

Adjust RV301 for the required output power (between 5 and 25W).

3.4.4 Two Point Modulation Adjustment

- **Note 1:** In this and following sections deviation settings are given first for wide bandwidth sets, followed by settings in brackets for narrow bandwidth sets [].
- **Note 2:** The reference modulation and limiter adjustments are controlled by 256-step electronic potentiometers (EPOTs), which are adjusted via the "Reference Modulation" and "Deviation" settings in PGM800Win. This allows the two point modulation and deviation settings to be adjusted for each channel.
- **Note 3:** To optimise the modulation response across the switching range, repeat steps 1-4 below for each channel that will be used (usually needed only for data applications). In applications where the modulation response is less critical (e.g. voice use only), carry out steps 1-4 below on the middle channel and use the "EPOT Fill" option¹ in PGM800Win to copy the value to the other channels.
- **Note 4:** If you are using an RF test set, turn the low pass filter off and set the high pass filter to 15kHz *before* beginning this procedure.
- 1. Inject an audio signal of 450Hz 1.5V rms (+5dBm) into the CTCSS input (D-range 1 (PL100) pin 8).

Key the transmitter by earthing the Tx-Key line.

- 2. Adjust the output from the audio generator to obtain ±3kHz [±1.5kHz] deviation at 450Hz.
- 3. Change the input frequency to 100Hz and, using PGM800Win, adjust the value of the "Reference Modulation" EPOT setting for the current channel to obtain ±3kHz [±1.5kHz] deviation (you can use either the mouse or up and down arrow keys).
- 4. Change the input frequency back to 450Hz.

Repeat steps 2 and 3 above until the deviations achieved at the two input frequencies are within 0.2dB of each other. You will need to do this at least four times.

5. Sweep the audio between 50 and 300Hz for peaks.

Note: A peak between 50 and 300Hz will indicate a fault condition, i.e.

- incorrect set-up
- or modulation circuitry fault.

The specification window is ±1dB relative to 150Hz from 65 to 260Hz.

^{1.} Use the "EDIT FILL" button on the tool bar or go to "Edit", "Fill", "Epot Settings" on the menu bar.

3.4.5 CTCSS Encoder (If Used)

Program a CTCSS tone on the default channel using PGM800Win.

If you are using an RF test set, turn off the 300Hz high pass filter.

Key the T826/827 with the front panel "Carrier" switch.

Adjust RV805 (CTCSS level adjust) to give ±500Hz [±250Hz] deviation.

Set the maximum deviation as per Section 3.4.6.

3.4.6 FM Deviation (Limiter) Adjustment

Note:

If the T826/827 will be used over the whole 8MHz switching range, you must set the deviation for each channel. However, if the module will be used on frequencies that cover only a 1MHz (or less) switching range, you can set the deviation on the middle channel and use this value for all other channels with the "EPOT Fill" option in PGM800Win.

Inject 1kHz at -10dBm into the line input (D-range 1 (PL100) pins 1 & 4; pins 2 & 3 shorted).

Adjust RV210 (line sensitivity) fully clockwise and key the transmitter by earthing the Tx-Key line. Using PGM800Win, adjust the value of the "Deviation" EPOT setting for the current channel to obtain a deviation limit of ±4.7kHz [±2.3kHz] (you can use either the mouse or up and down arrow keys).

Sweep the audio frequency from 100Hz to 4kHz and ensure that the maximum deviation does not exceed ±4.7kHz [±2.3kHz]. Readjust "Deviation" if necessary via PGM800Win.

3.4.7 Line-in Level Adjustment

Remove the CTCSS signal (if used).

Set the injected signal at the line input to the required line level (typically -10 to -20dBm).

Adjust RV210 (line sensitivity) to provide ±3kHz [±1.5kHz] deviation.

Reapply the CTCSS signal (if required).

3.5 Audio Processor Links

3.5.1 Link Details

Use the following table to set up the audio processor to the configuration you require. You should set the audio processor links before carrying out any of the tuning and adjustment procedures. The factory settings are shown in brackets [].

Plug	Link ^a		Function	
	1-2	A	not connected	
PL205	[3-4]	В	microphone pre-amp. output to compressor input	
	5-6	C	microphone pre-amp. output to multiplexer input	
	[1-2]	L	multiplexer output to pre-emphasis input	
PL210	3-4	M	multiplexer output to limiter input	
	5-6	N	multiplexer output to compressor input	
	1-2	G	not connected	
	[3-4]	Н	compressor output to multiplexer input	
PL215	5-6	I	compressor output to limiter input	
	7-8	J	compressor output to pre-emphasis input	
	9-10	K	not connected	
	1-2	D	pre-emphasis output to multiplexer input	
PL220	[3-4]	E	pre-emphasis output to limiter input	
	5-6	F	not connected	

a. The letters in this column and in the table in Section 3.5.2 below refer to the identification letters screen printed onto the PCB beside each pair of pins.

3.5.2 Typical Options

	PL205	PL210	PL215	PL220
microphone pre-amp. compressed and pre-emphasised;	[3-4]	[1-2]	[3-4]	[3-4]
line input pre-emphasised (standard set-up)	В	L	Н	E
microphone pre-amp. compressed and pre-emphasised;	3-4	3-4	7-8	1-2
line input unprocessed	В	M	J	D
line and microphone compressed	5-6	5-6	7-8	3-4
and pre-emphasised	С	N	J	E
microphone pre-amp. compressed;	3-4	3-4	3-4	5-6
line and microphone flat response	В	M	Н	F

3.6 Synthesiser Alignment

• Ensure that the T826/827 has been programmed with the required frequencies using PGM800Win software.

• **Single Channel** Select a channel using PGM800Win.

Multichannel Select the middle channel via PGM800Win.

- Connect a high impedance voltmeter to PL4-1 or the junction of L1 and R1 in the VCO (this measures the synthesiser loop voltage).
- Key the transmitter by earthing the Tx-Key line.

Single Channel Tune VCO trimmer &VC1-TX for a synthesiser loop volt-

age of 9V.

Multichannel Tune VCO trimmer &VC1-TX for a synthesiser loop volt-

age of 9V on the middle channel.

If there is no middle channel, tune &VC1-TX so that the channels are symmetrically placed around a loop voltage

of 9V.

All channels should lie within the upper and lower limits

of 13V and 5V respectively.

Do not attempt to program channels with a greater frequency separation than the specified switching range

(8MHz).

 Measure the T826/827 output frequency (at the rear panel N-type connector) and adjust the TCXO (=IC700) trimmer if required.

• T827 Only Check that the exciter output power is 1W ±300mW

(measured at the rear panel N-type connector).

This trimmer is susceptible to physical damage. Do not exert a downward force of more than 500g (1lb) when adjusting.

3.7 Output Power Adjustment (T826 Only)

Connect an RF power meter to the PA output.

Key the transmitter by earthing the Tx-Key line.

Adjust RV301 for 25W output power and check that the total current drawn is <4.5A.

Adjust RV301 for the required output power (between 5 and 25W).

3.8 Thermal Shutdown (T826 Only)

3.8.1 Normal Operation

Key the transmitter by earthing the Tx-Key line and set the output power to 25W as described in Section 3.7.

Short L480 to ground by connecting solder link SL480.

Set RV302 (high temperature power adjust) for an output power of 5W.

Remove the solder link on SL480.

Note:

The thermal shutdown temperature is factory set (%R320 and %R328) to 88°C for 25W continuous operation at 25°C ambient temperature¹.

3.8.2 Continuous Operation

If you want to operate the transmitter continuously at 60°C ambient temperature, you must:

- reduce the output power to 10W;
- increase the thermal shutdown temperature to 105°C by changing the resistor values to those shown in the following table:

Operating Conditions/ Ambient Temperature	%R320	%R328
25W continuous @ 25°C	18k	18k
10W continuous @ 60°C	1k5	8k2

^{1.} Ambient temperature is defined as the temperature of the air immediately surrounding the heatsink.

3.9 Audio Processor & CTCSS

3.9.1 Two Point Modulation

The T826 and T827 utilise two point modulation to obtain a wide audio bandwidth independent of the synthesiser loop filter response. This is achieved by simultaneously frequency modulating the VCO and phase modulating the synthesiser reference frequency. The relative signal levels fed to the two modulators are quite critical and cause interaction when setting up.

Both modulating signals require readjustment when the exciter is shifted in frequency greater than the switching range (i.e. $\Delta F > \pm 4 MHz$).

- **Note 1:** In this and following sections deviation settings are given first for wide bandwidth sets, followed by settings in brackets for narrow bandwidth sets [].
- Note 2: The reference modulation and limiter adjustments are controlled by 256-step electronic potentiometers (EPOTs), which are adjusted via the "Reference Modulation" and "Deviation" settings in PGM800Win. This allows the two point modulation and deviation settings to be adjusted for each channel.
- **Note 3:** To optimise the modulation response across the switching range, repeat steps 1-4 below for each channel that will be used (usually needed only for data applications). In applications where the modulation response is less critical (e.g. voice use only), carry out steps 1-4 below on the middle channel and use the "EPOT Fill" option¹ in PGM800Win to copy the value to the other channels.
- **Note 4:** If you are using an RF test set, turn the low pass filter off and set the high pass filter to 15kHz *before* beginning this procedure.

3.9.2 Modulator Adjustment

- 1. Inject an audio signal of 450Hz 1.5V rms (+5dBm) into the CTCSS input (D-range 1 (PL100) pin 8).
 - Key the transmitter by earthing the Tx-Key line.
- 2. Adjust the output from the audio generator to obtain ±3kHz [±1.5kHz] deviation at 450Hz.
- 3. Change the input frequency to 100Hz and, using PGM800Win, adjust the value of the "Reference Modulation" EPOT setting for the current channel to obtain ±3kHz [±1.5kHz] deviation (you can use either the mouse or up and down arrow keys).

^{1.} Use the "EDIT FILL" button on the tool bar or go to "Edit", "Fill", "Epot Settings" on the menu bar.

4. Change the input frequency back to 450Hz.

Repeat steps 2 and 3 above until the deviations achieved at the two input frequencies are within 0.2dB of each other. You will need to do this at least four times.

5. Sweep the audio between 50 and 300Hz for peaks.

Note: A peak between 50 and 300Hz will indicate a fault condition, i.e:

- incorrect set-up

or - modulation circuitry fault.

The specification window is ± 1 dB relative to 150Hz from 65 to 260Hz.

3.9.3 CTCSS Encoder (If Used)

Program a CTCSS tone on the default channel using PGM800Win.

If you are using an RF test set, turn off the 300Hz high pass filter.

Key the T826/827 with the front panel "Carrier" switch.

Adjust RV805 (CTCSS level adjust) to give ±500Hz [±250Hz] deviation.

Set the maximum deviation as per Section 3.9.4.

3.9.4 Limiter Adjustment

Note:

If the T826/827 will be used over the whole 8MHz switching range, you must set the deviation for each channel. However, if the module will be used on frequencies that cover only a 1MHz (or less) switching range, you can set the deviation on the middle channel and use this value for all other channels with the "EPOT Fill" option in PGM800Win.

Set the links in the audio processor section as required (refer to Section 3.5).

Inject 1kHz at -10dBm into the line input (D-range 1 (PL100) pins 1 & 4; and pins 2 & 3 shorted).

Adjust RV210 (line sensitivity) fully clockwise and key the transmitter by earthing the Tx-Key line. Using PGM800Win, adjust the value of the "Deviation" EPOT setting for the current channel to obtain a deviation limit of ±4.7kHz [±2.3kHz] (you can use either the mouse or up and down arrow keys).

Sweep the audio frequency from 100Hz to 4kHz and ensure that the maximum deviation does not exceed ±4.7kHz [±2.3kHz]. Readjust "Deviation" if necessary via PGM800Win.

3.9.5 Line Level Without Compressor

This section assumes that the compressor is not used. If the compressor is required, refer to Section 3.9.6.

Remove the CTCSS signal (if used).

Adjust the line sensitivity as follows:

- set the injected signal at the line input to the required line level (typically -10 to -20dBm);
- adjust RV210 (line sensitivity) to provide ±3kHz [±1.5kHz] deviation.

Reapply the CTCSS signal (if required).

3.9.6 Compressor

The compressor may be used on the line input only, the microphone input only, or on both the line and microphone inputs. If the compressor is used, refer to one of the following sections as appropriate.

3.9.6.1 Compressor On Line Input Only

Set RV210 (line sensitivity) fully clockwise and key the transmitter by earthing the Tx-Key line.

Reduce the line level to -50dBm at 1kHz and set RV220 (compression level) fully clockwise.

Check that ± 3 kHz [± 1.5 kHz] deviation is still available.

Slowly increase the audio input level until the demodulated waveform shows significant signs of clipping (approximately ±4.5kHz [±2.3kHz] deviation).

Adjust RV220 anticlockwise until the demodulated waveform is just clipping (approximately ±4kHz [±2kHz] deviation).

Increase the input level to -10dBm and check that the test tone is still held just into clipping. The input line level should be typically -10 to -20dBm.

3.9.6.2 Compressor On Microphone Input Only

Key the transmitter by earthing the Tx-Key line and plug a microphone jack into the front panel socket.

Adjust RV220 (compression level) fully clockwise.

Acoustically couple the microphone to a tone box (1kHz) and close the PTT switch.

Increase the audio level until the demodulated waveform shows significant signs of clipping (approximately ±4.5kHz [±2.3kHz] deviation).

Adjust RV220 anticlockwise until the demodulated waveform is just clipping (approximately ±4kHz [±2kHz] deviation).

Increase the audio level by 10dB and verify that the test tone is held just into clipping.

Whistle steadily into the microphone, checking that approximately ±4kHz [±2kHz] deviation is produced. The modulated waveform should be basically sinusoidal.

Speak into the microphone, checking that the modulation peaks reach about $\pm 5 \text{kHz} [\pm 2.5 \text{kHz}]$ deviation.

As the line is to be used without compression, set RV210 (line sensitivity) as described in Section 3.9.5.

3.9.6.3 Compressor On Both Line & Microphone Inputs

Set up as described in Section 3.9.6.1.